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ABSTRACT

Error correcting output codes (ECOC) is a popular framework for addressing multi-class classification
problems by combing multiple binary sub-problems. In each binary sub-problem, at least one class is
actually a “meta-class” consisting of multiple original classes, and treated as a single class in the
learning process. This strategy brings a simple and common implementation of multi-class classifica-
tion, but simultaneously, results in the under-exploitation of already-provided structure knowledge in
individual original classes. In this paper, we present a new methodology to show that the utilization of
such prior structure knowledge can further strengthen the performance of ECOCs, and the structure
knowledge is formulated under the cluster and manifold assumptions, respectively. Finally, we validate
our methodology on both toy and real benchmark datasets (UCI, face recognition and objective
category), consequently validate the structure knowledge of individual original classes for ECOC-based

Cluster assumption multi-class classification.

Manifold assumption

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In real applications, we frequently encounter problems invol-
ving multi-class classification, in which observed data belong to
more than two classes [1,2]. Examples for such applications
include optical character recognition, text classification and
medical analysis, etc..

There are mainly two independent lines of researches for
designing multi-class classification methods. One line is “direct
design”, i.e., directly designing a multi-class classifier by adopting
multi-class output encodings, typically including decision tree,
neural network, logistic regression [3], least-squares classifier,
and multi-class SVMs [4-6]. The other line is “(indirect) decom-
position or ECOC design”, i.e., decomposing the original multi-
class problems into multiple binary sub-problems, which can be
efficiently solved by any binary classification method [7-9], and
then combining the results from all binary sub-classifiers for final
classification. This strategy is simple and common, thus has
brought an independent and broad area of researches. In this
paper, we focus the second line.

The simplest decomposition strategy is One-Vs-All (OVA), in
which each class is compared with all other ones, generating C
binary sub-problems (or corresponding binary classifiers), where
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C is the number of classes. A new instance is then assigned to the
class with the maximum classification score among all corre-
sponding binary classifiers. Friedman [10] suggested the One-Vs-
One (OVO) strategy, in which all pairs of classes are compared,
resulting in C(C— 1)/2 binary sub-problems, and the prediction for
a new instance is implemented by voting of all corresponding
binary classifiers. Dietterich et al. [11] developed the general
(binary) error correcting output codes (ECOC) framework, in
which each class is given a N-length error correcting output
codeword with each component valued from {—1, +1}, and those
codewords for individual classes have the optimal separation
between each other. Arranging those codewords as rows, a
C x N-size codeword matrix is constructed, whose individual
columns indicate the class-set partitions for the N generated
binary sub-problems, respectively. For a new instance, a N-length
code can be obtained from the corresponding binary classifiers,
and the instance is classified to the “closest” class measured by
Hamming distance between the instance code and individual
class codewords. Allwein et al. [7] extended the ECOC framework
and developed ternary ECOC, in which each component in the
codeword matrix is allowed to take values from {—1, +1, 0}, and
the zero-value indicates that the corresponding class is not
considered in the current binary sub-problem. The prediction of
any new instance adopts a loss-based function instead of the
original Hamming distance. It is ternary ECOC that covers OVA,
OVO and ECOC in a unified framework.

Later, new improvements have been developed for ECOC and
focus on both the designs of its encoding (w.r.t. the construction
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of codeword matrix) [2,8,9] and decoding (w.r.t. the prediction of
new instances) [12-14] strategies. For the encoding strategy,
many researchers attempted to adapt the encoding process to
the learning problem at hand, or more specifically, utilized the
prior knowledge of the current learning problem to develop
problem-dependent codeword matrices [8,15]. For example, Pujol
et al. [8] sacrificed the optimal codeword separation in favor of
class discrimination in the class-set partitions. Escalera et al. [9]
modeled complex classification problems by splitting the com-
plex classes into several subclasses. Pujol et al. [2] extended any
initial codeword matrix by adding new binary classifiers that
focus on the difficult-to-split classes. Orthogonal to the work over
the encoding process, other researchers concentrated more on the
decoding process. Hastie et al. [12] adopted the Bradley-Terry
(BT) model to develop a new decoding method, which integrates
the results of the binary classifiers in OVO into a single estimate
of class membership probabilities. Later, Zadrozny et al. [13]
extended such a decoding method to any ternary coding scheme.
Luo et al. [16] weighted the output space of each base classifier so
that the distance function of decoding is adapted. While Take-
nouchi et al. [14] considered the inconsistency between the
encoding and decoding processes in ternary ECOC approaches,
and developed ternary AdaBoost and ternary BT model-based
decoding method to make them consistent with each other.

Although those ECOC approaches work well in multi-class
classification, there is still prior knowledge under-exploited in
their implementations. Specifically, for binary ECOC approaches,
in each binary sub-problem, at least one class is actually a “meta-
class” consisting of several original classes, and for ternary ECOC
approaches except OVO, such a “meta-class” exists in at least one
sub-problem. In the learning process, each “meta-class” will be
treated as a single class, which brings a simple and common
implementation of multi-class classification, but simultaneously
results in the under-exploitation of already-provided structure
knowledge in individual original classes. It is well-known that for
any learning method, its generalization depends on both the
representation of data and exploitation of prior knowledge for
the current learning problem [17], as a result, for better general-
ization performance, we should explore as much prior knowledge
as possible, let alone the knowledge provided already. In this
paper, we present a methodology to show that utilizing such prior
structure knowledge in implementing ECOCs can further
strengthen the multi-class classification performance. The struc-
ture knowledge here is formulated under assumptions that data
distribution follows the cluster and manifold structures, respec-
tively, corresponding to incorporating manners similar to those in
structural regularized SVM (SRSVM) [18] and Laplacian SVM
(LapSVM) [19], respectively. Finally, we validate our methodology
by comparison with the baselines on both toy and real benchmark
datasets (UCI, face recognition and objective category), conse-
quently validate the structure knowledge of individual original
classes for ECOC-based multi-class classification. The contribu-
tions of this paper are summarized as follows,

e Point out the common under-exploitation of already-provided
structure knowledge in the implementation of the off-the-
shelf ECOCs (except OVO).

e Provide a general methodology for incorporating such struc-
ture knowledge into the implementation of ECOCs, which can
be applied to any ECOC, as well as their improvements.

e Develop a more effective multi-class classifier than its original
design, which is exactly consistent with the theory that the
generalization of any learning method depends on both the
representation of data and exploitation of prior knowledge
[17], consequently validate the prior structure of individual
original classes for ECOC-based multi-class classification.

In this paper, our aim is to utilize the already-provided
structure knowledge in individual original classes, respectively
under the cluster and manifold assumptions, to show that it is
helpful for ECOC-based multi-class classification. Of course, other
formulations for the structure knowledge, or other prior knowl-
edge in individual original classes can also be exploited for
boosting the multi-class classification performance.

The rest of the paper is organized as follows, Section 2
introduces the ECOC framework for multi-class classification.
Section 3 presents the proposed methodology. Section 4 shows
the comparison experiments. Section 5 draws some conclusions.

2. Error correcting output codes

Error correcting output codes [11] is a general framework for
solving multi-class classification problems by combining multiple
binary classifiers. The main idea is to assign the given classes a set
of corresponding Error correcting output codewords with the
optimal separation between each other. The components of those
codewords are valued from {—1, +1}. Then a codeword matrix
Me{—1, +1}*" can be constructed with individual rows corre-
sponding to the codewords for the C classes, respectively, and
individual columns indicating the class-set partitions for the N
generated binary sub-problems (or corresponding binary classi-
fiers), respectively. After applying the N binary classifiers, a N-
length code is generated for each new instance, and the instance
is assigned to the “closest” class according to the Hamming
distance between the instance code and codewords of individual
classes. The framework was then extended by allowing the
components of M to take values from {—1, +1, 0} [7], in which
the zero-value indicates that the corresponding class is not
considered in the current binary sub-problem.

Given a dataset {x;y;}{_; where each y;e{1,...C}, C>2, and
codeword matrix Me{—1, +1, 0}*N, suppose the binary classi-
fication method implements the Tikhonov regularization [20,21],
then with a linear decision function flx)=w'x+b, the jth binary
classifier can be formulated as

) A
min > ?:1f(WjTXi-FijMyJ)‘FjHWjHZ M)
b ]

where M,,; denotes the true label of x; in the jth binary classifier,
£(-,-) is a loss function between the classification score and true
label of any instance, and / is a regularization parameter balan-
cing between the classification of training instances and complex-
ity of the learning model.

After applying the N binary classifiers, a N-length code can be
obtained for each new instance consisting of the corresponding
classification scores, and the instance is assigned to the “closest”
class according to some distance metric between the instance
code and individual class codewords. Based on the commonly-
used Hamming distance, the prediction for an arbitrary new
instance x can be formulated as

. . N (1—sign(M,f(x))
sy () @

where fj(x) denotes the classification score for instance x by the
jth binary classifier.

3. Methodology

In this section, we present the methodology for utilizing the
structure knowledge of individual original classes in the imple-
mentation of ECOCs, assuming that data distribution obeys the
cluster and manifold structures, respectively. In what follows, we
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first formulate the structure knowledge, and then present our
proposed methodology in separated sub-sections.

3.1. Prior knowledge

In each binary sub-problem of ECOCs, each class is actually a
“meta-class” consisting of multiple original classes, and treated as
a single class. This strategy brings a simple strategy for applying
any binary classification method to multi-class problems, but
simultaneously, leaves the prior structure knowledge of indivi-
dual original classes under-exploited, which would also be helpful
for multi-class classification. In this paper, we aim to verify that
such prior knowledge is helpful for ECOC-based multi-class
classification.

For formulating the structure knowledge, some assumption for
data distribution should be adopted. There are mainly two such
assumptions in literature, i.e., the cluster and manifold assump-
tions [18,22]. The cluster (structure) assumption assumes that
data are distributed within several clusters, and instances in the
same cluster should share similar classification outputs. Here we
adopt the class granularity,' i.e., view each original class as a
single cluster, and formulate the structure knowledge for the kth
(original) class under the cluster assumption as

2
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where 2, denotes the set of instances belonging to the kth class,
|Q2¢| denotes the number of instances in @4. u; and V, denote the
instance mean and covariance matrix of the kth class, respectively
[18]. From the cluster assumption, one should minimize Eq. (3) to
guarantee that instances in the same class with a cluster structure
should be as similar as possible in the output space, which is
equivalent to minimizing the within-class compactness® under
the cluster assumption.

The manifold (structure) assumption assumes that data are
distributed on some low dimensional manifold, which can be
captured by a Laplacian graph with its nodes representing
instances and edge weights representing similarities between
instances. Similar instances should share similar classification
outputs according to the graph Laplacian. For the kth (original)
class, the structure knowledge under the manifold assumption
can be formulated as

sz X € Q, st(f(xs) —f(x0))?
= WTZxS,xt e kagt(xs—xf)(xs—xt)TW
éWTX,(LkaTW (4)

where X, denotes the data matrix for the kth class. Ly=D*-S¥ is
the Laplacian matrix for the kth class, D¥ is a diagonal matrix with
its component written as D =", o, S¢. and Si describes the
similarity between x; and x, over the Laplaaan graph, which

1 Class granularity refers to that data structure within each class is depicted
by a single cluster, or in other words, each class is viewed as a single cluster.

2 Within-class compactness describes the similarity of classification outputs
for instances within the same class.

is usually defined as

1 or e(1%=x7)/20% if x % € Q,
0 else

Sq = 6)
where ¢ is a weight parameter [19]. From the manifold assump-
tion, one should minimize Eq. (5) to guarantee that instances in
the same class with a manifold structure should be as similar as
possible in the output space, which is equivalent to minimizing
the within-class compactness of individual original classes under
the manifold assumption.

In what follows, we will present the methodology for incor-
porating such structure knowledge into ECOCs, assuming that
data distribution follows the cluster and manifold structures in
separated sub-sections, respectively.

3.2. Structure-exploited ECOC with cluster assumption

Given dataset {x;y;}_,, where each y;e{1,...C}, C>2, and
codeword matrix Me{—1, +1, 0}**N, suppose there are G
original classes involved in the jth binary sub-problem, or more
specifically, G original classes whose corresponding labels are
non-zero in the jth binary sub-problem. With a linear decision
function flx)=w'x+b, through utilizing the structure knowledge
under the cluster assumption, the new optimization problem for
the jth binary classifier can be formulated as

2 A -
man Lw] x;+b;, My )+ 4| |w; || +ESWJ‘TVJWJ' (6)
where V = Zk Vk, VJ is the covariance matrix for the kth

original class 1nvolved in the jth binary classifier, and /s is the
regularization parameter regulating the relative importance of
the structure incorporated.

When adopting the hinge loss as in SVM, Eq. (6) can be re-
formulated as

. 1 2 " Tx7j
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Further, by adopting the standard method of Lagrange multi-
pliers, the dual problem of Eq. (7) can be formulated as
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where {océ}?:] denote the Lagrange multipliers for the jth binary
classifier. One can easily observe that Eq. (8) replaces each xx; in
the original hinge-loss ECOC methods by xsT(I+)LSVj)‘1xt. Since the
inner product can be viewed as a similarity criteria between
instances, the new method actually defines a new similarity
criteria considering different weights for individual features by
(d+sV)~1, or more specifically, by the sum of covariance
matrices with parameterA;. The optimization problem in Eq. (8)
is a QP problem which can be solved by any standard QP solvers.
Then the classification score for an arbitrary instance x by the jth
binary classifier can be formulated as

fix = Z::l

Finally, those obtained classification scores by individual
binary sub-classifiers are combined for the prediction of x.

However, when instances are linearly non-separable in the
input space, the linear classifiers would provide poor performance
[23]. In those cases, kernelization provides an alternative solution

M, xI (14 AV) ' x+ b o)
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by projecting those instances from the input space to a higher (or
even infinite) dimension kernel space, in which instances are
more likely to be linearly separable [24]. In what follows, we will
provide the kernelized version for the new method. Suppose a
nonlinear (implicit) kernel mapping ¢ :R%—.#, where 7
denotes the high dimension kernel space, the new optimization
problem in the kernel space can be written as

. 1 2, . 2 As Tuio
min gl G v
s.t. MyJ(W}-d)(X,‘)+bj) > 176,‘]
&i=0vs=1.n (10

where V7 = fozlvf,:p denotes the sum of covariance matrices
for individual original classes in the kernel space. The dual
problem of Eq. (10) can be formulated as

n 1 n n fod \ i
Max 30 W=D o1 D g My My ) 1+ AV de)

st > odM,;=0
O<od<Avs=1.n 1)

which can be further written as
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S.t. ajTMyj =0
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where 0,, and 1, denote the n-dimensional all-zero and all-one
vectors, respectively, &/denotes the vector of Lagrange multipliers,
and My, denotes the label vector for given instances in the jth
binary sub-problem. K;= (X, X7y, denotes the kernel matrix
over given instances, l~(j= (X Py, denotes the kernel matrix
over the given instances and instances arranged by the sequence
of original classes, and Kj= (PP, denotes the kernel matrix
over instances arranged by the sequence of original classes in the
jth binary classifier. The detailed derivation from Eq. (11) to
Eq. (12) can be found in Appendix A.

3.3. Structure-exploited ECOC with manifold assumption

With a linear decision function f{x)=wx+ b, through utilizing the
structure knowledge under the manifold assumption, the new opti-
mization problem for the jth binary classifier can be formulated as

. 1 2 s TagivingiT
Jmin g [P+ e WX
s.t. Myij(WJTX,‘ +bj) > 1—5,]'

&i=0yvi=1.n (13)

where X/ and I/ denote the data matrix and Laplacian matrix for the
jth classifier, respectively. The dual problem of Eq. (13) can be
formulated as

n 1 n n L i i
i ZS =1 OC]S_EZS =1 Zt =1 oo My My, jx{ 1+ A X LX) %

s.t. Z;l:] OCJ;MySi =0
O<od<i ¥s=1l.n (14)

It can be easily observed that Eq. (14) replaces each original
xIx, by XTI+ AsX'I/XT)~"x,, amounting to defining a new similar-
ity criteria between instances, which actually considers different
weights for individual features by the Laplacian matrix with
parameter A;. The optimization problem in Eq. (14) is a QP
problem, which can be solved by any standard QP solvers. Then
the classification score for an arbitrary instance x by the jth binary

classifier can be formulated as
fi0=">"" | oAMy X 1+ A XX x4 by (15)

Similarly, suppose a nonlinear (implicit) kernel mapping
¢ : RY—> ., the new optimization problem in the kernel space
can be written as

n i l n
max. 3 %3,
e
. o
L odoMy My b (xo) 1+ AXITLXI” ) 7 )
" .
st. oM, ;=0
0<od<Avs=1,.,n (16)

where X/?denotes data matrix for the jth binary sub-problem in
the kernel space. Eq. (16) can be further formulated as

max o 1,— % of [(K—AK LW + UK L) DKMy My, | of
st. o My;=0
0, <ol <1, (17)

and the detailed derivation can be seen in Appendix B.

Clearly, the presented methodology can be applied to any
ECOC approaches including OVO (in that case, one actually
considers the individual structure of the two classes in each
binary sub-problem). Moreover, other loss functions can also be
adopted in this methodology.

4. Experiments

In this section, we validate the proposed methodology over
both toy and real benchmark datasets. Through adopting the
hinge loss function, we actually adopt SVM as the base binary
classifier, which is among the most powerful and commonly-used
binary classification methods, and we resort to the LIBSVM [25]
toolbox for its learning. For the base ECOC approaches, we adopt
OVA using the maximum-classification-score strategy for testing
new instances [1], and ternary DECOC using Hamming distance
for testing new instances [8]. We resort to the ECOCs library [15]
for their implementations. Then the compared baselines are
denoted as OVA_SVM and DECOC_SVM, and the corresponding
new methods are CS_OSVM, MS_OSVM, CS_DSVM and MS_DSVM,
which denote OVA_SVM incorporating structure knowledge
under the cluster and manifold assumptions, respectively, and
DECOC_SVM incorporating structure knowledge under the cluster
and manifold assumptions, respectively. The RBF kernel is
adopted over the toy dataset, and both linear and RBF kernels
are adopted over the real datasets. The regularization parameters
/4 and /g are both selected by 5-fold cross validation from {0.001,
0.01, 0.1, 1, 10, 100, 1000}, and the width parameter of the RBF
kernel is selected by 5-fold cross validation from {0.001, 0.01, 0.1,
1, 10, 100, 1000} x go, where gy is the average distance between
training instances. In what follows, we will present experiments
on toy and real datasets in separate sub-sections, respectively.

4.1. Toy problem

In this sub-section, we evaluate the new methods by illustra-
tions over two toy datasets, respectively following the cluster and
manifold distribution structures.

4.1.1. Cluster-structured toy dataset

For illustrating CS_OSVM and CS_DSVM (under the cluster
assumption), we adopt a two-dimensional five-class toy dataset,
in which each class follows a Guassian distribution. Each class has
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40 instances, half of which are selected for training and the rest
for testing, the attributes of this dataset is described in Table 1.

The training and testing performances of those compared
classifiers are shown in Table 2, in which the bold value indicates
the best performance among the three compared classifiers
(OVA_SVM, CS_OSVM and MS_OSVM; DECOC_SVM, CS_DSVM
and MS_DSVM). From Table 2, we can observe that both CS_OSVM
and MS_OSVM perform better than OVA_SVM, and similarly, both
CS_DSVM and MS_DSVM perform better than DECOC-SVM on
both training and testing datasets. At the same time, CS_OSVM
and CS_DSVM perform better than MS_OSVM and MS_DSVM,
respectively. As a result, the utilization of already-provided
structure knowledge in individual original classes can help
improve the classification performance. Moreover, when real data
distribution follows the cluster structure, methods utilizing
structure knowledge under the cluster assumption will lead to
better performance than those under the manifold assumption.

The superiority of CS_OSVM and CS_DSVM here can also be
observed in Fig. 1, in which the decision boundaries of CS_OSVM
and CS_DSVM are displayed, respectively, with those of OVA_SVM
and DECOC_SVM as the baselines. As shown in Fig. 1, the
instances in class 1 are distributed in a sphere, while the instances
in class 3 are distributed in an ellipsoid with a horizontal long-
axis, and the instances in class 4 are distributed in an ellipsoid
with a vertical long-axis, consequently, the decision boundary
(between class 1 and 3, 1 and 4) should be closer to class 1. At the
same time, the instances in class 2 are distributed in an ellipsoid
with a vertical long-axis, and the instances in class 5 are dis-
tributed in an ellipsoid with a horizontal long-axis, consequently,
the decision boundary (between class 1 and 2, 1 and 5) should be
farther to class 1. As a result, from Fig. 1, the decision boundaries
of both CS_OSVM and CS_DSVM better capture the (cluster)
structure of individual original classes, consequently are able to
classify more instances correctly.

4.1.2. Manifold-structured toy dataset

For illustrating MS_OSVM and MS_DSVM (under the manifold
assumption), we adopt a two-dimensional toy dataset consisting
of three concentric-circles, one circle each class. Each class has
200 instances, a half for training and the rest for testing.

The training and testing performances of individual classifiers
are shown in Table 3, in which the bold value indicates the best
performance among the three compared classifiers (OVA_SVM,
CS_OSVM and MS_OSVM; DECOC_SVM, CS_DSVM and
MS_DSVM). From Table 3, we can observe that both CS_OSVM
and MS_OSVM perform better than OVA_SVM, and similarly, both
CS_DSVM and MS_DSVM perform better than DECOC_SVM on

Table 1
Attributes of the toy dataset.

both training and testing datasets. Moreover, MS_OSVM and
MS_DSVM perform better than CS_OSVM and CS_DSVM, respec-
tively. As a result, the already-provided structure knowledge in
individual original classes is helpful for ECOC-based multi-class
classification. At the same time, when real data distribution obeys
the manifold assumption, methods utilizing structure knowledge
under the manifold assumption will lead to better performance
than those under the cluster assumption.

The superiority of MS_OSVM and MS_DSVM here can also be
observed in Fig. 2, in which the decision boundaries of MS_OSVM
and MS_DSVM are shown, respectively, with those of OVA_SVM
and DECOC_SVM as the baselines. From Fig. 2, both MS_OSVM
and MS_DSVM better capture the real data distribution than
OVA_SVM and DECOC_SVM, respectively, thus are both able to
classify more instances correctly.

4.2. Real problems

Those methods are further compared over both UCI and image
recognition datasets, and the corresponding results are provided
in separated sub-sections, respectively.

4.2.1. UC datasets

The attributes of the 12 multi-class UCI datasets are shown in
Table 4, and the comparison results using the linear and RBF
kernels are reported in Tables 5 and 6, respectively. In both
Tables 5 and 6, the bold value in each row indicates that
CS_OSVM/MS_0OSVM performs better than OVA_SVM, or
CS_DSVM/MS_DSVM performs better than DECOC_SVM, the value
further marked by “#” indicates that the better classifier achieves
significant improvement by t-test (with the confidence interval at
95%), and the underlined value indicates the best performance
among the three compared methods (OVA_SVM, CS_OSVM and
MS_OSVM; DECOC_SVM, CS_DSVM and MS_DSVM).

From both Tables 5 and 6, we can make several observations as
follows,

e When linear kernel is adopted, both CS_OSVM and MS_OSVM
perform better than OVA_SVM, and similarly, both CS_DSVM
and MS_DSVM perform better than DECOC-SVM. More speci-
fically, CS_OSVM performs better than OVA_SVM on 10 out of
the 12 datasets, achieves significant improvements on 5 ones,
and performs comparably on the other 2 datasets. MS_OSVM
achieves better performances than OVA_SVM on 11 datasets,
significant improvements on 4 ones, and comparable perfor-
mances on the other one dataset. At the same time, CS_DSVM
performs better than DECOC_SVM on 10 datasets, achieves

Class index 1(“x™) PAGES) 3“0 4 (- 5(“o™)
Mean [0,0] [1.1] [-1,1] [0,2] [0,1]
Covariance 02 0 003 0 02 O 003 O 01 O
[ 0 0.03] { 0 0.2} [ 0 0.03] [ 0 0.2] { 0 01}

Instance 40 instances in each class, 50% for training, and 50% for testing

Table 2

The performances of compared classifiers on both training and testing datasets.
Methods OVA_SVM CS_OSVM MS_OSVM DECOC_SVM CS_DSVM MS_DSVM
Tra. acc. 0.92 0.94 0.93 0.93 0.94 0.93
Tes. acc. 0.87 0.89 0.88 0.86 0.89 0.87
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2

Fig. 1. The respective decision boundaries of OVA_SVM and CS_OSVM on (a) training and (b) testing datasets, as well as the respective decision boundaries of DECOC_SVM
and CS_DSVM on (c) training and (d) testing datasets.

Table 3

The performances of compared classifiers on both training and testing datasets.
Methods OVA_SVM CS_OSVM MS_OSVM DECOC_SVM CS_DSVM MS_DSVM
Tra. acc. 0.96 0.9667 0.9733 0.9667 0.97 0.9767
Tes. acc. 0.9033 0.9133 0.9333 0.94 0.9464 0.9533

significant improvements on 5 ones, and performs comparably
on the other 2 datasets. MS_DSVM also achieves better
performances on 10 datasets, significant improvements on
6 ones, and comparable performances on the other 2 dataset.
As a result, incorporating the structure knowledge of indivi-
dual original classes can improve the performances of ECOCs
over most datasets when linear kernel is adopted.

When RBF kernel is adopted, both CS_OSVM and MS_OSVM
perform better than OVA_SVM, and similarly, both CS_DSVM
and MS_DSVM perform better than DECOC-SVM. More speci-
fically, CS_OSVM performs better than OVA_SVM on 11 data-
sets, achieves significant improvements on 4 ones, and
performs comparably on the other one datasets. MS_OSVM
achieves better performances than OVA_SVM on 10 datasets,
significant improvements on 4 ones, and comparable perfor-
mances on the other 2 dataset. At the same time, CS_DSVM
performs better than DECOC_SVM on 10 datasets, achieves
significant improvements on 3 ones, and performs comparably
on the other 2 datasets. MS_DSVM also achieves better

performances on 11 datasets, significant improvements on
4 ones, and comparable performances on the other one
dataset. As a result, incorporating the structure knowledge of
individual original classes can improve the performances of
ECOCs over most datasets when RBF kernel is adopted.

CS_OSVM and CS_DSVM perform comparably with MS_OSVM
and MS_DSVM with both linear and RBF kernels, respectively.
More specifically, when linear kernel is adopted, CS_OSVM per-
forms the best among the three compared methods over
6 datasets, MS_OSVM performs the best over 5 datasets. At the
same time, CS_DSVM achieves the best performances among the
three compared methods over 6 datasets, MS_DSVM performs
the best over 6 datasets. When RBF kernel is adopted, CS_OSVM
performs the best over 6 datasets, MS_OSVM performs the best
over 6 datasets. At the same time, CS_DSVM performs the best
over 6 datasets, MS_DSVM performs the best over 6 datasets. As
a result, both cluster and manifold assumption are reasonable in
real datasets. When data distribution is closer to cluster struc-
tures, methods incorporating structure knowledge with cluster
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Fig. 2. The respective decision boundaries of OVA_SVM and MS_OSVM on (a) training and (b) testing datasets, as well as the respective decision boundaries of DECOC_SVM
and MS_DSVM on (c) training and (d) testing datasets.

Table 4
The attributes of the 12 multi-class UCI datasets.

Yeast

53.0447 +.0718

55.4804 + .0366*

55.2628 +.0428"

57.9161 +.0015

58.1863 +.0012

Dataset Class Instance Feature Dataset Class Instance Feature
Balance 3 625 4 Segmentation 7 2310 19
Cmc 3 1473 9 Tae 3 151 5
Dermatology 6 366 33 Vehicle 4 846 18
Ecoli 8 336 8 Vowel 11 990 10
Glass 7 214 10 Wine 3 178 13
Iris 3 150 4 Yeast 10 1484 8
Table 5
The comparison results on multi-class UCI datasets using the linear kernel.
Dataset (LINEAR) OVA_SVM CS_OSVM MS_OSVM DECOC_SVM CS_DSVM MS_DSVM
Balance 88.1766 + 0.0310 88.6396 + 0.0106 88.8736 + 0.0207 87.4644 1 0.0060 89.4231 + 0.0038* 88.7978 + 0.0038*
Cmc 47.5737 +.0060 49.8413 + .0152* 47.9858 +.0094 47.2102 +.0121 47.1209 +.0128 47.3462 +.0116
Dermatology 97.1154 + 0.0127 97.3901 + 0.0041 97.4952 + 0.0092 96.1770 + 0.0134 97.2759 + 0.0104* 97.8327 + 0.0096*
Ecoli 87.7500 + 0.0145 87.2982 + 0.0098 87.5613 + 0.0104 86.1446 + 0.0017 86.5783 + 0.0129 85.8731+0.0213
Glass 92.8027 + 0.0980 94.1633 + 0.0184* 93.7321 + 0.0336 94.4218 + 0.0406 95.9184 + 0.0082* 95.8362 + 0.0104*
Iris 95.0000 + 0.0495 94.8333 +0.0378 95.1823 + 0.0209 95.6667 + 0.0190 96.8333 + 0.0175 96.9637 + 0.0112*
Segmentation 91.6017 + 0.0242 92.6883 + 0.0187 92.5412 + 0.0203 92.8973 + 0.0327 93.0465 + 0.0201 93.2142 + 0.0198
Tae 52.7619 + 0.0821 53.7143 + 0.0339 53.8952 + 0.0224* 49.7143 + 0.1583 50.0952 + 0.0643 50.5347 + 0.0306
Vehicle 77.7962 £+ 0.0221 78.2227 + 0.0210 78.4142 + 0.0189 77.5924 +0.0216 77.1327 +£0.0187 77.6421 + 0.0146
Vowel 51.2121 4+ 0.0224 52.5758 + 0.0281* 52.3354 + 0.0196* 57.4411 + 0.0026 60.6061 + 0.0306* 59.4241 + 0.0096*
Wine 96.5909 +.0148 97.7273 + 0.0074* 97.2826 + 0.0096* 96.4545 + 0.0129 97.7273 + 0.0086* 96.8487 + 0.0074*

57.7895 +.0026
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Table 6

The comparison results on multi-class UCI datasets using the RBF kernel.
Dataset (RBF) OVA_SVM CS_OSVM MS_OSVM DECOC_SVM CS_DSVM MS_DSVM
Balance 94.7736 4+ 0.0074 94.7456 + 0.0082 94.8126 + 0.0081 94.4632 + 0.0571 96.5759 + 0.0178* 95.7862 + 0.0442*
Cmc 54.3878 + 0.0232 56.2245 + 0.0188" 56.1108 + 0.0201* 53.5123 £ 0.0306 53.7325 + 0.0301 53.5758 + 0.0372
Dermatology 96.9388 + 0.0280 97.4097 + 0.0128 97.8863 + 0.0142 96.7712 + 0.0161 97.7083 + 0.0101 97.9328 + 0.0093*
Ecoli 87.7912 4+ 0.0299 88.2579 + 0.0167 87.5368 £+ 0.0232 88.0506 + 0.0415 88.2341 + 0.0397 88.4321 + 0.0286
Glass 98.0952 + 0.0104 99.1430 + 0.0097* 99.2481 + 0.0093* 98.7632 + 0.0122 99.0809 + 0.0016 98.9643 + 0.0093
Iris 97.6333 + 0.0546 98.8200 + 0.0276 98.1245 + 0.0208 98.1312 + 0.0284 98.9342 + 0.0111 98.7459 + 0.0192
Segmentation 95.1515 + 0.0602 95.7215 + 0.0319* 95.9623 + 0.0408* 94.6517 +0.0438 95.9872 + 0.0329 96.1978 + 0.0225
Tae 55.3324 + 0.0602 56.2767 + 0.0720 57.3328 + 0.0348* 54.1312 +0.3010 55.6748 + 0.2717 55.9912 + 0.2862"
Vehicle 81.0394 + 0.0573 82.4948 + 0.0426™ 81.6956 + 0.0565 82.0120+0.0133 83.5758 + 0.0179* 82.1108 + 0.0142
Vowel 96.8687 + 0.0072 97.3737 + 0.0086 97.1816 + 0.0076 97.4212 + 0.0037 97.3203 + 0.0018 97.0102 + 0.0036
Wine 96.1410 + 0.0293 96.5987 + 0.0201 95.7859 + 0.0332 94.7739 + 0.0407 96.1432 + 0.0121* 95.8832 + 0.0221*
Yeast 61.2991 +.0619 61.5020 + .0484 61.8742 + .0339 59.6663 +.0023 59.2346 + 0.0033 59.7975 + .0016

Fig. 3. Sample images of 20 objectives in the COIL-20 database.

assumption would bring better performance, otherwise, when
data distribution is closer to manifold structures, methods
incorporating structure knowledge with manifold assumption
would perform better. However, selecting a suitable assumption
actually depends on more prior knowledge about real data
distribution.

e In both tables, the performances of OVA are comparable with
those of DECOC on most datasets adopted, which is consistent
with the conclusion that when binary classifiers are well-
tuned regularized classifiers such as SVM, a simple OVA
scheme is as accurate as any other approaches [1,26].

4.2.2. Image recognition
Image recognition is a popular classification task in pattern
recognition. In this sub-section, we use two image recognition
datasets, i.e., COIL-20 [27] and Yale [28], corresponding to objective
and face recognition, respectively, to validate our proposed methods.
COIL-20 is a database containing gray-scale images of 20
objects, as shown in Fig. 3 [29]. The objects were placed on a

motorized turntable against a black background. The turntable
was rotated through 360 degrees to vary the object pose with
respect to a fixed camera. Images of the objects were taken at
pose intervals of 5 degrees, which corresponds to 72 images per
object. In our experiments, we resize each image to 32 x 32 pixels.
For each object, we randomly select 10 images for training, and
the rest for testing. The process along with the corresponding
classifier learning is repeated 20 times, and the average perfor-
mances are reported in Fig. 5.

The Yale Face Database contains 165 grayscale images of 15
persons, 11 images per person. Images for each person are taken
at different facial expressions or configurations. Fig. 4 [30] shows
the 11 images for one of the 15 persons. In our experiments, we
resize each image to 32 x 32 pixels. For each person, we randomly
select 5 images for training, and the rest for testing. This process
along with the corresponding classifier learning is repeated 20
times, and the average performances are reported in Fig. 6.

From both Figs. 5 and 6, we can observe that both CS_OSVM
and MS_OSVM perform better than OVA_SVM, and both CS_DSVM
and MS_DSVM perform better than DECOC-SVM, which implies
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Fig. 4. Sample images for one person in the Yale dataset.
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Fig. 5. Testing accuracies of compared methods with linear and RBF kernels on
COIL-20 dataset, respectively.
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Fig. 6. Testing accuracies of compared methods with linear and RBF kernels on
Yale dataset, respectively.

that the utilization of structure knowledge can boost the perfor-
mance of ECOCs. Moreover, as shown in Fig. 5, the classification
accuracies of MS_OSVM/MS-DSVM are better than those of
CS_OSVM/CS_DSVM on COIL-20, since COIL-20 naturally implies
a low-dimensional intrinsic manifold structure, on which the
neighboring samples are small transformations of one another
[31]. At the same time, as shown in Fig. 6, CS_OSVM/CS_DSVM
yields better performances than MS_OSVM/MS-DSVM, implying
that the Yale dataset is more likely prone to the cluster structure
than the manifold structure.

5. Conclusion

In the off-the-shelf ECOC approaches, each class in the binary
sub-problems could be a “meta-class” containing several original-
classes, and treated as a single class in the implementation, naturally
resulting in the under-exploitation of prior structure knowledge in
individual original-classes. In this paper, we develop a methodology
for utilizing such structure knowledge so as to show that it is helpful
for ECOC-based multi-class classification. We formulate the

structure knowledge under the cluster and manifold assumptions,
respectively, corresponding to incorporating manners similar to
those in SRSVM and LapSVM, respectively. Finally, we validate our
methodology, and consequently the structure knowledge by
encouraging results on both toy and real benchmark datasets. Of
course, other formulations of structure knowledge or incorporating
manners can also be adopted, as well as other forms of prior
knowledge in individual original classes. At the same time, we
adopt the class granularity in utilizing structure knowledge with the
cluster assumption, while more delicate granularity, such as cluster-
granularity,® can be used as well to further exploit the underlying
sub-structures of clusters within each original class.
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Appendix A

The optimization problem in Eq. (11) can be equivalently
written as

o 1 . T b —1 i j
max o1, 50 (XYl W) X My M o
s.t. diTMyj =0
6,«, < d” < lfn 18

and the kth covariance matrix in the jth binary sub-problem in
the kernel space can be formulated as

ViP = 3 (@)t N pxe) -t /| Q|
Xs € Q‘k

U . N T g
=X /|Q-XT g 1 X0 (19)

A
k

where Q{(denotes the set of instances belonging to the kth
original-class in the jth binary sub-problem, |¢}| denotes the

number of instances in QL X’,:pand u{:pdenote the data matrix and
class mean of the kth class in the jth sub-problem in the kernel

. - i . .
space, respectively, and 1 @ denotes a |, |-dimensional vector
k

with all components equaling to l/|Q{{ , then we have

o _ G [P
V= Zk:lvk

C; idjd” . i —T i
=D XX QX g 1 g X

s T )
Ny /1@ 1= 10 Ty X7
—[x?...x? : :
- [x1 Xc,] I
l‘%‘/\ﬂq\—l‘% Tia, ) | %G

L pi? AP (20)

where I‘Q,” is a |Q§c| x \Q’k| diagonal matrix.

3 Cluster granularity refers to that data structure within each class is depicted
by a certain amount of clusters.
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Further, from the Woodbury’s formula [32],
(A+UBV)"' =A"'—A"'UB(B+BVA~'UB)"'BVA™! 21
we have

(4 2V )1 = (14 2,P? AP?" )1
—1-AP?AA+ 2sAP? PP A) T AP?' 22)

By substituting Eq. (22) into the objective function of Eq. (11),
we have the formulation of Eq. (12).

Appendix B

The optimization problem in Eq. (16) can be equivalently
written as

max o i, %a TTIXIT (U4 25X DX )~ X0 My My, o
st. o’TMy; =0
0,<ai<il, (23)
Further, from the Woodbury’s formula [32], we have
(42X PUX? ) = [ 2 XL (U 4 2 X X2y 1 X 24)

By substituting Eq. (24) into the objective function of Eq. (16),
we have the formulation of Eq. (17).
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